校準(zhǔn)可除去大部分初始系統(tǒng)誤差。余下的誤差包括:放大器CMRR、DAC(用于控制電流和電壓設(shè)定點(diǎn))非線性和溫度漂移造成的誤差。制造商指定的溫度范圍各有不同,但最常見的是25°C ±10°C,本文即以此為例。
本設(shè)計(jì)中使用的電池,完全放電后電壓為2.7 V,完全充電后電壓為4.2 V;使用5 mΩ分流電阻的滿量程電流為12 A;用于。AD8450的電流檢測(cè)放大器的增益為66;用來測(cè)量電池電壓差動(dòng)放大器 增益為0.8。
總系統(tǒng)誤差中,電流檢測(cè)電阻漂移占了相當(dāng)一部分。Vishay 大金屬電阻;器件型號(hào):Y14880R00500B9R,最大溫度系數(shù)為15ppm/°C,可減少漂移。AD5689 雙通道、16 位nanoDAC+?模 轉(zhuǎn)換器,最大INL 額定值為2 LSB,可降低非線性度。ADR45404.096 V 基準(zhǔn)電壓源,最大溫度系數(shù)額定值為4 ppm/°C,是在電流和電壓設(shè)定點(diǎn)之間進(jìn)行取舍后的理想選擇。經(jīng)電流檢測(cè)放大器以66 倍衰減后,DAC INL 會(huì)使?jié)M量程誤差增加約32 ppm,基準(zhǔn)電 壓源引入的增益誤差為40 ppm。
電流檢測(cè)放大器在增益為66 時(shí)的CMRR 最小值為116 dB。如果系統(tǒng)針對(duì)2.7 V 電池進(jìn)行校準(zhǔn),則4.2 V 電池將產(chǎn)生40 ppm 滿量程誤差。此外,CMRR 變化為0.01 μV/V/°C,或者0.1μV/V(10°C 溫度范圍)。電流檢測(cè)放大器的失調(diào)電壓漂移最大值為0.6 μV/°C,因而10°C 溫度偏移將產(chǎn)生6 μV 失調(diào),或者100 ppm 滿量程誤差。
最后,電流檢測(cè)放大器的增益漂移最大值為3 ppm/°C,而總漂移為30 ppm(10°C 范圍內(nèi))。檢測(cè)電阻漂移為15ppm/°C,因此總共增加150 ppm 增益漂移(10°C 范圍內(nèi))。表3 總結(jié)了這些誤差 源,它們產(chǎn)生的總滿量程誤差不足0.04%。該誤差很大一部分來源于分流電阻,因此必要時(shí)可以采用漂移值較低的分流電阻,以改善系統(tǒng)精度。
表3. 10?C 范圍內(nèi)的電流測(cè)量誤差
類似地,對(duì)于電壓輸入而言,2 LSB DAC INL 相當(dāng)于折合到5.12 V滿量程輸入的31 ppm 誤差。若電池電壓在2.7 V 和4.2 V 范圍內(nèi)變化,那么差動(dòng)放大器的78.1 dB CMRR 將產(chǎn)生187 μV 失調(diào)誤差,或者36.5 ppm 滿量程誤差。來自CMRR 漂移的額外誤差遠(yuǎn)低于1ppm,可以忽略。
差動(dòng)放大器的失調(diào)漂移為5 μV/°C,或者10 ppm 滿量程誤差(10°C范圍內(nèi))。差動(dòng)放大器的增益漂移為3 ppm/°C,或者30 ppm(10°C 范圍內(nèi))。基準(zhǔn)電壓漂移為40 ppm(10°C 范圍)??傠妷赫`差最大值為0.015%,如表4 所總結(jié)。
表4. 10?C 范圍內(nèi)的電壓測(cè)量誤差
實(shí)現(xiàn)高精度電流測(cè)量要比高精度電壓測(cè)量困難得多,因?yàn)樾盘?hào)電平更小而動(dòng)態(tài)范圍更寬。分流電阻和儀表放大器失調(diào)漂移隨溫度 產(chǎn)生的誤差最大。
減少校準(zhǔn)時(shí)間
系統(tǒng)校準(zhǔn)時(shí)間可達(dá)每通道數(shù)分鐘,因此減少校準(zhǔn)時(shí)間便可降低制造成本。若每通道需3 分鐘,則96 通道系統(tǒng)便需要4.8 小時(shí)來執(zhí)行校準(zhǔn)。電壓和電流測(cè)量路徑有所不同,因?yàn)殡娏鳂O性會(huì)發(fā)生改變,且失調(diào)和增益誤差在各種模式下均有所不同,因此需單獨(dú)校 準(zhǔn)。若沒有低漂移元件,就必須針對(duì)每一個(gè)模式進(jìn)行溫度校準(zhǔn),導(dǎo)致校準(zhǔn)時(shí)間非常長。
當(dāng) AD845x在充電和放電模式之間切換時(shí),內(nèi)部多路復(fù)用器將在到達(dá)儀表放大器和其他信號(hào)調(diào)理電路之前改變電流極性。因此, 儀表放大器將始終獲得相同的信號(hào),無論處于充電還是放電模式,且增益誤差在兩種模式下均相同,如圖7 所示。多路復(fù)用器的電阻在充電和放電兩種模式下不同,但儀表放大器的高輸入阻抗使得此誤差可忽略不計(jì)。
從系統(tǒng)設(shè)計(jì)角度而言,兩種模式下具有相同的失調(diào)和增益誤差意味著單次校準(zhǔn)可消除充電和放電模式下的初始誤差,使校準(zhǔn)時(shí)間減半。此外,AD845x 具有極低漂移,對(duì)其進(jìn)行單次室溫校準(zhǔn)即可, 無需在不同溫度下進(jìn)行校準(zhǔn)??紤]到整個(gè)系統(tǒng)壽命期間所需的校準(zhǔn),節(jié)省的時(shí)間可轉(zhuǎn)化為成本的大幅下降。
減少紋波
從線性拓?fù)滢D(zhuǎn)換到開關(guān)拓?fù)浜?,系統(tǒng)設(shè)計(jì)人員面臨的問題之一是電壓和電流信號(hào)中的紋波。每一個(gè)開關(guān)電源系統(tǒng)都會(huì)產(chǎn)生一些紋波,但在高效率、低成本要求的PC 和其他大用量電源管理應(yīng)用中穩(wěn)壓器模塊的推動(dòng),技術(shù)變革非???。精心設(shè)計(jì)電路和PCB 布局, 可以減少紋波,使得開關(guān)電源可以為一個(gè)16 位ADC 供電而不會(huì)降低其性能,詳見AN-1141 應(yīng)用筆記用開關(guān)穩(wěn)壓器為雙電源精密 ADC 供電。此外,ADP1878同步降壓控制器數(shù)據(jù)手冊(cè)提供有關(guān)高功率應(yīng)用的更多信息。大部分開關(guān)電源使用單級(jí)LC 濾波器,但 若需要更佳的紋波和更高的系統(tǒng)精度,則雙級(jí)LC 濾波器將有所幫助。
均流控制
AD8450支持方便的純模擬均流,是結(jié)合多通道實(shí)現(xiàn)高容量電池化成和測(cè)試的快速、高性價(jià)比之選。例如,可以利用一個(gè)5 V、20 A單通道設(shè)計(jì),三個(gè)相同的通道均流后可產(chǎn)生5 V、60 A 系統(tǒng)。采用AD8450 和一些無源器件即可實(shí)現(xiàn)均流總線和控制電路。與單通道設(shè)計(jì)相比,這是一種高性價(jià)比方式,因?yàn)榭梢允褂玫统杀竟β孰娮悠骷?,無額外開發(fā)時(shí)間。詳情可參見AD8450 數(shù)據(jù)手冊(cè)。
圖7. AD845x 在充電和放電模式下具有相同的失調(diào)和斜率
結(jié)論
AD8450, AD8451, and ADP1972簡(jiǎn)化系統(tǒng)設(shè)計(jì),具有優(yōu)于0.05%的 系統(tǒng)精度和超過90%的能效,有助于解決可充電電池制造瓶頸問題,同時(shí)為環(huán)保技術(shù)的普及做出貢獻(xiàn)。開關(guān)電源可為現(xiàn)代可充電電池的制造提供高性能、高性價(jià)比解決方案。
參考電路
Wang, Jianqiang, et al. “Study of High-Capacity Single-Body Li-Ion Battery Charging and Discharging System.” PEDS2009.
Wolter, M, et al. “End-of-Line Testing and Formation Process in Li-Ion Battery Assembly Lines.” 9th International Multi-Conference on Systems, Signals and Devices, 2012 IEEE
作者
Wenshuai Liao
Wenshuai Liao 是ADI 公司位于馬薩諸塞州威明頓的線性產(chǎn)品部門(LPG)的一名營銷工程師。他在獲得清華大學(xué)光學(xué)工程碩士學(xué)位后,曾在大唐電信集團(tuán)任3G節(jié)點(diǎn)BRF工程師三年。他于2002年8月加入ADI公司。
Luis-Orozco
Luis Orozco是ADI公司工業(yè)和儀器儀表部的系統(tǒng)應(yīng)用工程師。主要涉足精密儀器儀表、化學(xué)分析和環(huán)境監(jiān)測(cè)應(yīng)用。他于2011年2月加入ADI公司。
評(píng)論