国产chinesehdxxxx老太婆,办公室玩弄爆乳女秘hd,扒开腿狂躁女人爽出白浆 ,丁香婷婷激情俺也去俺来也,ww国产内射精品后入国产

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

TPU憑什么成為深度學(xué)習(xí)的首選處理器?

mK5P_AItists ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-09-04 16:04 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

張量處理單元(TPU)是一種定制化的 ASIC 芯片,它由谷歌從頭設(shè)計(jì),并專(zhuān)門(mén)用于機(jī)器學(xué)習(xí)工作負(fù)載。TPU 為谷歌的主要產(chǎn)品提供了計(jì)算支持,包括翻譯、照片、搜索助理和 Gmail 等。

Cloud TPU 將 TPU 作為可擴(kuò)展的云計(jì)算資源,并為所有在 Google Cloud 上運(yùn)行尖端 ML 模型的開(kāi)發(fā)者與數(shù)據(jù)科學(xué)家提供計(jì)算資源。在 Google Next’18 中,我們宣布 TPU v2 現(xiàn)在已經(jīng)得到用戶(hù)的廣泛使用,包括那些免費(fèi)試用用戶(hù),而 TPU v3 目前已經(jīng)發(fā)布了內(nèi)部測(cè)試版。

第三代 Cloud TPU

如上為 tpudemo.com 截圖,該網(wǎng)站 PPT 解釋了 TPU 的特性與定義。在本文中,我們將關(guān)注 TPU 某些特定的屬性。

神經(jīng)網(wǎng)絡(luò)如何運(yùn)算

在我們對(duì)比 CPUGPU 和 TPU 之前,我們可以先了解到底機(jī)器學(xué)習(xí)或神經(jīng)網(wǎng)絡(luò)需要什么樣的計(jì)算。如下所示,假設(shè)我們使用單層神經(jīng)網(wǎng)絡(luò)識(shí)別手寫(xiě)數(shù)字。

如果圖像為 28×28 像素的灰度圖,那么它可以轉(zhuǎn)化為包含 784 個(gè)元素的向量。神經(jīng)元會(huì)接收所有 784 個(gè)值,并將它們與參數(shù)值(上圖紅線)相乘,因此才能識(shí)別為「8」。其中參數(shù)值的作用類(lèi)似于用「濾波器」從數(shù)據(jù)中抽取特征,因而能計(jì)算輸入圖像與「8」之間的相似性:

這是對(duì)神經(jīng)網(wǎng)絡(luò)做數(shù)據(jù)分類(lèi)最基礎(chǔ)的解釋?zhuān)磳?shù)據(jù)與對(duì)應(yīng)的參數(shù)相乘(上圖兩種顏色的點(diǎn)),并將它們加在一起(上圖右側(cè)收集計(jì)算結(jié)果)。如果我們能得到最高的預(yù)測(cè)值,那么我們會(huì)發(fā)現(xiàn)輸入數(shù)據(jù)與對(duì)應(yīng)參數(shù)非常匹配,這也就最可能是正確的答案。

簡(jiǎn)單而言,神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)和參數(shù)之間需要執(zhí)行大量的乘法和加法。我們通常會(huì)將這些乘法與加法組合為矩陣運(yùn)算,這在我們大學(xué)的線性代數(shù)中會(huì)提到。所以關(guān)鍵點(diǎn)是我們?cè)撊绾慰焖賵?zhí)行大型矩陣運(yùn)算,同時(shí)還需要更小的能耗。

CPU 如何運(yùn)行

因此 CPU 如何來(lái)執(zhí)行這樣的大型矩陣運(yùn)算任務(wù)呢?一般 CPU 是基于馮諾依曼架構(gòu)的通用處理器,這意味著 CPU 與軟件和內(nèi)存的運(yùn)行方式如下:

CPU 如何運(yùn)行:該動(dòng)圖僅展示了概念性原理,并不反映 CPU 的實(shí)際運(yùn)算行為。

CPU 最大的優(yōu)勢(shì)是靈活性。通過(guò)馮諾依曼架構(gòu),我們可以為數(shù)百萬(wàn)的不同應(yīng)用加載任何軟件。我們可以使用 CPU 處理文字、控制火箭引擎、執(zhí)行銀行交易或者使用神經(jīng)網(wǎng)絡(luò)分類(lèi)圖像。

但是,由于 CPU 非常靈活,硬件無(wú)法一直了解下一個(gè)計(jì)算是什么,直到它讀取了軟件的下一個(gè)指令。CPU 必須在內(nèi)部將每次計(jì)算的結(jié)果保存到內(nèi)存中(也被稱(chēng)為寄存器或 L1 緩存)。內(nèi)存訪問(wèn)成為 CPU 架構(gòu)的不足,被稱(chēng)為馮諾依曼瓶頸。雖然神經(jīng)網(wǎng)絡(luò)的大規(guī)模運(yùn)算中的每一步都是完全可預(yù)測(cè)的,每一個(gè) CPU 的算術(shù)邏輯單元(ALU,控制乘法器和加法器的組件)都只能一個(gè)接一個(gè)地執(zhí)行它們,每一次都需要訪問(wèn)內(nèi)存,限制了總體吞吐量,并需要大量的能耗。

GPU 如何工作

為了獲得比 CPU 更高的吞吐量,GPU 使用一種簡(jiǎn)單的策略:在單個(gè)處理器中使用成千上萬(wàn)個(gè) ALU?,F(xiàn)代 GPU 通常在單個(gè)處理器中擁有 2500-5000 個(gè) ALU,意味著你可以同時(shí)執(zhí)行數(shù)千次乘法和加法運(yùn)算。

GPU 如何工作:這個(gè)動(dòng)畫(huà)僅用于概念展示。并不反映真實(shí)處理器的實(shí)際工作方式。

這種 GPU 架構(gòu)在有大量并行化的應(yīng)用中工作得很好,例如在神經(jīng)網(wǎng)絡(luò)中的矩陣乘法。實(shí)際上,相比 CPU,GPU 在深度學(xué)習(xí)的典型訓(xùn)練工作負(fù)載中能實(shí)現(xiàn)高幾個(gè)數(shù)量級(jí)的吞吐量。這正是為什么 GPU 是深度學(xué)習(xí)中最受歡迎的處理器架構(gòu)。

但是,GPU 仍然是一種通用的處理器,必須支持幾百萬(wàn)種不同的應(yīng)用和軟件。這又把我們帶回到了基礎(chǔ)的問(wèn)題,馮諾依曼瓶頸。在每次幾千個(gè) ALU 的計(jì)算中,GPU 都需要訪問(wèn)寄存器或共享內(nèi)存來(lái)讀取和保存中間計(jì)算結(jié)果。因?yàn)?GPU 在其 ALU 上執(zhí)行更多的并行計(jì)算,它也會(huì)成比例地耗費(fèi)更多的能量來(lái)訪問(wèn)內(nèi)存,同時(shí)也因?yàn)閺?fù)雜的線路而增加 GPU 的物理空間占用。

TPU 如何工作

當(dāng)谷歌設(shè)計(jì) TPU 的時(shí)候,我們構(gòu)建了一種領(lǐng)域特定的架構(gòu)。這意味著,我們沒(méi)有設(shè)計(jì)一種通用的處理器,而是專(zhuān)用于神經(jīng)網(wǎng)絡(luò)工作負(fù)載的矩陣處理器。TPU 不能運(yùn)行文本處理軟件、控制火箭引擎或執(zhí)行銀行業(yè)務(wù),但它們可以為神經(jīng)網(wǎng)絡(luò)處理大量的乘法和加法運(yùn)算,同時(shí) TPU 的速度非常快、能耗非常小且物理空間占用也更小。

其主要助因是對(duì)馮諾依曼瓶頸的大幅度簡(jiǎn)化。因?yàn)樵撎幚砥鞯闹饕蝿?wù)是矩陣處理,TPU 的硬件設(shè)計(jì)者知道該運(yùn)算過(guò)程的每個(gè)步驟。因此他們放置了成千上萬(wàn)的乘法器和加法器并將它們直接連接起來(lái),以構(gòu)建那些運(yùn)算符的物理矩陣。這被稱(chēng)作脈動(dòng)陣列(Systolic Array)架構(gòu)。在 Cloud TPU v2 的例子中,有兩個(gè) 128X128 的脈動(dòng)陣列,在單個(gè)處理器中集成了 32768 個(gè) ALU 的 16 位浮點(diǎn)值。

我們來(lái)看看一個(gè)脈動(dòng)陣列如何執(zhí)行神經(jīng)網(wǎng)絡(luò)計(jì)算。首先,TPU 從內(nèi)存加載參數(shù)到乘法器和加法器的矩陣中。

然后,TPU 從內(nèi)存加載數(shù)據(jù)。當(dāng)每個(gè)乘法被執(zhí)行后,其結(jié)果將被傳遞到下一個(gè)乘法器,同時(shí)執(zhí)行加法。因此結(jié)果將是所有數(shù)據(jù)和參數(shù)乘積的和。在大量計(jì)算和數(shù)據(jù)傳遞的整個(gè)過(guò)程中,不需要執(zhí)行任何的內(nèi)存訪問(wèn)。

這就是為什么 TPU 可以在神經(jīng)網(wǎng)絡(luò)運(yùn)算上達(dá)到高計(jì)算吞吐量,同時(shí)能耗和物理空間都很小。

好處:成本降低至 1/5

因此使用 TPU 架構(gòu)的好處就是:降低成本。以下是截至 2018 年 8 月(寫(xiě)這篇文章的時(shí)候)Cloud TPU v2 的使用價(jià)格。

Cloud TPU v2 的價(jià)格,截至 2018 年 8 月。

斯坦福大學(xué)發(fā)布了深度學(xué)習(xí)和推理的基準(zhǔn)套裝 DAWNBench。你可以在上面找到不同的任務(wù)、模型、計(jì)算平臺(tái)以及各自的基準(zhǔn)結(jié)果的組合。

DAWNBench:https://dawn.cs.stanford.edu/benchmark/

在 DAWNBench 比賽于 2018 年 4 月結(jié)束的時(shí)候,非 TPU 處理器的最低訓(xùn)練成本是 72.40 美元(使用現(xiàn)場(chǎng)實(shí)例訓(xùn)練 ResNet-50 達(dá)到 93% 準(zhǔn)確率)。而使用 Cloud TPU v2 搶占式計(jì)價(jià),你可以在 12.87 美元的價(jià)格完成相同的訓(xùn)練結(jié)果。這僅相當(dāng)于非 TPU 的不到 1/5 的成本。這正是神經(jīng)網(wǎng)絡(luò)領(lǐng)域特定架構(gòu)的威力之所在。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 處理器
    +關(guān)注

    關(guān)注

    68

    文章

    19896

    瀏覽量

    235292
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4948

    瀏覽量

    131256
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    154

    瀏覽量

    21203

原文標(biāo)題:僅需1/5成本:TPU是如何超越GPU,成為深度學(xué)習(xí)首選處理器的

文章出處:【微信號(hào):AItists,微信公眾號(hào):人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    智能芯片市場(chǎng)格局一變?cè)僮?TPU將成深度學(xué)習(xí)的未來(lái)?

    在Google I/O 2016的主題演講進(jìn)入尾聲時(shí),谷歌的CEO皮采提到了一項(xiàng)他們這段時(shí)間在AI和機(jī)器學(xué)習(xí)上取得的成果,一款叫做Tensor Processing Unit(張量處理單元)的處理器,簡(jiǎn)稱(chēng)
    發(fā)表于 05-19 11:49 ?1501次閱讀

    CORAL-EDGE-TPU:珊瑚開(kāi)發(fā)板TPU

    包括一個(gè)上系統(tǒng)模塊(SOM)和護(hù)壁板。SOM基于iMX 8M應(yīng)用處理器,還包含LPDDR4內(nèi)存,eMMC存儲(chǔ),雙頻Wi-Fi和Edge TPU。Edge TPU是由Google設(shè)計(jì)的小型ASIC
    發(fā)表于 05-29 10:43

    CPU,GPU,TPU,NPU都是什么

    嵌入式算法移植優(yōu)化學(xué)習(xí)筆記5——CPU,GPU,TPU,NPU都是什么一、什么是CPU?二、什么是GPU?三、什么是TPU?四、什么是NPU?附:一、什么是CPU?中央處理器(CPU)
    發(fā)表于 12-15 06:07

    谷歌新神經(jīng)計(jì)算專(zhuān)用處理器TPU超越CPU與GPU的原因

    網(wǎng)絡(luò)巨擘谷歌(Google)日前指出,該公司的Tensor處理器TPU)在機(jī)器學(xué)習(xí)的測(cè)試中,以數(shù)量級(jí)的效能優(yōu)勢(shì)超越英特爾(Intel)的Xeon處理器和Nvidia的繪圖
    發(fā)表于 04-28 09:39 ?1291次閱讀
    谷歌新神經(jīng)計(jì)算專(zhuān)用<b class='flag-5'>處理器</b><b class='flag-5'>TPU</b>超越CPU與GPU的原因

    寒武紀(jì)科技將發(fā)布深度學(xué)習(xí)專(zhuān)用處理器

    人工智能繞不過(guò)深度學(xué)習(xí)。目前深度學(xué)習(xí)的應(yīng)用還是基于通用處理器如CPU、GPU。寒武紀(jì)科技陳天石表示,在幾年前的谷歌大腦項(xiàng)目,用了1.6萬(wàn)個(gè)C
    發(fā)表于 10-11 15:53 ?0次下載
    寒武紀(jì)科技將發(fā)布<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>專(zhuān)用<b class='flag-5'>處理器</b>

    Google正式發(fā)布了第三代AI人工智能/機(jī)器學(xué)習(xí)專(zhuān)用處理器TPU 3.0

    Google I/O 2018開(kāi)發(fā)者大會(huì)期間,Google正式發(fā)布了第三代AI人工智能/機(jī)器學(xué)習(xí)專(zhuān)用處理器TPU 3.0。
    發(fā)表于 05-11 15:46 ?2230次閱讀

    Google發(fā)布超低功耗的ASIC芯片Edge TPU處理器

    Google于美國(guó)當(dāng)?shù)貢r(shí)間周三在Next云端大會(huì),重磅發(fā)布了Edge TPU處理器。
    的頭像 發(fā)表于 07-30 14:11 ?9231次閱讀

    TPU/GPU /FPGA誰(shuí)將能成為智能時(shí)代協(xié)處理器的領(lǐng)跑者

    深度學(xué)習(xí)應(yīng)用大量涌現(xiàn)使超級(jí)計(jì)算機(jī)的架構(gòu)逐漸向深度學(xué)習(xí)應(yīng)用優(yōu)化,從傳統(tǒng) CPU 為主 GPU 為輔的英特爾處理器變?yōu)?GPU 為主 CPU 為
    發(fā)表于 08-31 09:55 ?1885次閱讀

    獨(dú)特的方式操縱SRAM單元以處理深度學(xué)習(xí)任務(wù)

    操作/秒/瓦(TOPS / W)。它的計(jì)算密度可以擊敗Google的TPU一個(gè)數(shù)量級(jí)。 該設(shè)計(jì)是使用內(nèi)存中計(jì)算方法的加速產(chǎn)品線中最新的一種。設(shè)計(jì)使用40納米NOR閃存單元的深度學(xué)習(xí)
    的頭像 發(fā)表于 09-19 09:15 ?2017次閱讀

    深度學(xué)習(xí)算法進(jìn)行優(yōu)化的處理器——NPU

    NPU(Neural-network Processing Unit,嵌入式神經(jīng)網(wǎng)絡(luò)處理器)是針對(duì)深度學(xué)習(xí)*算法進(jìn)行優(yōu)化的處理器。它能像人類(lèi)神經(jīng)網(wǎng)絡(luò)一樣快速、高效地
    發(fā)表于 10-17 10:53 ?2866次閱讀

    基于 TPU v4的超級(jí)計(jì)算機(jī)性能解析

    谷歌張量處理器(tensor processing unit,TPU)是該公司為機(jī)器學(xué)習(xí)定制的專(zhuān)用芯片(ASIC),第一代發(fā)布于 2016 年,成為了 AlphaGo 背后的算力。與
    發(fā)表于 04-23 12:35 ?1311次閱讀
    基于 <b class='flag-5'>TPU</b> v4的超級(jí)計(jì)算機(jī)性能解析

    深度學(xué)習(xí)服務(wù)器怎么做 深度學(xué)習(xí)服務(wù)器diy 深度學(xué)習(xí)服務(wù)器主板用什么

    。因此,深度學(xué)習(xí)服務(wù)器逐漸成為了人們進(jìn)行深度學(xué)習(xí)實(shí)驗(yàn)的必要工具。本文將介紹深度
    的頭像 發(fā)表于 08-17 16:11 ?1175次閱讀

    TPU和NPU的區(qū)別

    和NPU之間的區(qū)別。 什么是TPUTPU,即Tensor Processing Unit,是由Google公司開(kāi)發(fā)的專(zhuān)用於深度學(xué)習(xí)的加速
    的頭像 發(fā)表于 08-27 17:08 ?1w次閱讀

    深度學(xué)習(xí)GPU加速效果如何

    圖形處理器(GPU)憑借其強(qiáng)大的并行計(jì)算能力,成為加速深度學(xué)習(xí)任務(wù)的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?617次閱讀

    TPU處理器的特性和工作原理

    張量處理單元(TPU,Tensor Processing Unit)是一種專(zhuān)門(mén)為深度學(xué)習(xí)應(yīng)用設(shè)計(jì)的硬件加速。它的開(kāi)發(fā)源于對(duì)人工智能(AI)
    的頭像 發(fā)表于 04-22 09:41 ?1472次閱讀
    <b class='flag-5'>TPU</b><b class='flag-5'>處理器</b>的特性和工作原理