国产chinesehdxxxx老太婆,办公室玩弄爆乳女秘hd,扒开腿狂躁女人爽出白浆 ,丁香婷婷激情俺也去俺来也,ww国产内射精品后入国产

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>電子資料>PyTorch教程16.4之自然語言推理和數(shù)據(jù)集

PyTorch教程16.4之自然語言推理和數(shù)據(jù)集

2023-06-05 | pdf | 0.13 MB | 次下載 | 免費

資料介紹

16.1 節(jié)中,我們討論了情感分析的問題。該任務旨在將單個文本序列分類為預定義的類別,例如一組情感極性。然而,當需要決定一個句子是否可以從另一個句子推斷出來,或者通過識別語義等同的句子來消除冗余時,知道如何對一個文本序列進行分類是不夠的。相反,我們需要能夠?qū)Τ蓪Φ奈谋拘蛄羞M行推理。

16.4.1。自然語言推理

自然語言推理研究是否可以從前提中推斷出假設(shè),其中兩者都是文本序列。換句話說,自然語言推理決定了一對文本序列之間的邏輯關(guān)系。這種關(guān)系通常分為三種類型:

  • 蘊涵:假設(shè)可以從前提中推導出來。

  • 矛盾:可以從前提推導出假設(shè)的否定。

  • 中性:所有其他情況。

自然語言推理也稱為識別文本蘊含任務。例如,下面的一對將被標記為 蘊涵,因為假設(shè)中的“示愛”可以從前提中的“互相擁抱”中推導出來。

前提:兩個女人互相擁抱。

假設(shè):兩個女人正在秀恩愛。

下面是一個矛盾的例子,因為“running the coding example”表示“not sleeping”而不是“sleeping”。

前提:一個人正在運行來自 Dive into Deep Learning 的編碼示例。

假設(shè):這個人正在睡覺。

第三個例子顯示了一種中立關(guān)系,因為“為我們表演”這一事實不能推斷出“著名”或“不著名”。

前提:音樂家正在為我們表演。

假設(shè):音樂家很有名。

自然語言推理一直是理解自然語言的中心話題它享有從信息檢索到開放域問答的廣泛應用。為了研究這個問題,我們將從調(diào)查一個流行的自然語言推理基準數(shù)據(jù)集開始。

16.4.2。斯坦福自然語言推理 (SNLI) 數(shù)據(jù)集

斯坦福自然語言推理 (SNLI) 語料庫是超過 500000 個帶標簽的英語句子對的集合 Bowman等人,2015 年。我們將提取的 SNLI 數(shù)據(jù)集下載并存儲在路徑中../data/snli_1.0。

import os
import re
import torch
from torch import nn
from d2l import torch as d2l

#@save
d2l.DATA_HUB['SNLI'] = (
  'https://nlp.stanford.edu/projects/snli/snli_1.0.zip',
  '9fcde07509c7e87ec61c640c1b2753d9041758e4')

data_dir = d2l.download_extract('SNLI')
Downloading ../data/snli_1.0.zip from https://nlp.stanford.edu/projects/snli/snli_1.0.zip...
import os
import re
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

#@save
d2l.DATA_HUB['SNLI'] = (
  'https://nlp.stanford.edu/projects/snli/snli_1.0.zip',
  '9fcde07509c7e87ec61c640c1b2753d9041758e4')

data_dir = d2l.download_extract('SNLI')

16.4.2.1。讀取數(shù)據(jù)集

原始 SNLI 數(shù)據(jù)集包含的信息比我們在實驗中真正需要的信息豐富得多。因此,我們定義了一個函數(shù)read_snli 來僅提取部分數(shù)據(jù)集,然后返回前提、假設(shè)及其標簽的列表。

#@save
def read_snli(data_dir, is_train):
  """Read the SNLI dataset into premises, hypotheses, and labels."""
  def extract_text(s):
    # Remove information that will not be used by us
    s = re.sub('\\(', '', s)
    s = re.sub('\\)', '', s)
    # Substitute two or more consecutive whitespace with space
    s = re.sub('\\s{2,}', ' ', s)
    return s.strip()
  label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
  file_name = os.path.join(data_dir, 'snli_1.0_train.txt'
               if is_train else 'snli_1.0_test.txt')
  with open(file_name, 'r') as f:
    rows = [row.split('\t') for row in f.readlines()[1:]]
  premises = [extract_text(row[1]) for row in rows if row[0] in label_set]
  hypotheses = [extract_text(row[2]) for row in rows if row[0] in label_set]
  labels = [label_set[row[0]] for row in rows if row[0] in label_set]
  return premises, hypotheses, labels
#@save
def read_snli(data_dir, is_train):
  """Read the SNLI dataset into premises, hypotheses, and labels."""
  def extract_text(s):
    # Remove information that will not be used by us
    s = re.sub('\\(', '', s)
    s = re.sub('\\)', '', s)
    # Substitute two or more consecutive whitespace with space
    s = re.sub('\\s{2,}', ' ', s)
    return s.strip()
  label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
  file_name = os.path.join(data_dir, 'snli_1.0_train.txt'
               if is_train else 'snli_1.0_test.txt')
  with open(file_name, 'r') as f:
    rows = [row.split('\t') for row in f.readlines()[1:]]
  premises = [extract_text(row[1]) for row in rows if row[0] in label_set]
  hypotheses = [extract_text(row[2]) for row in rows if row[0] in label_set]
  labels = [label_set[row[0]] for row in rows if row[0] in label_set]
  return premises, hypotheses, labels

現(xiàn)在讓我們打印前 3 對前提和假設(shè),以及它們的標簽(“0”、“1”和“2”分別對應“蘊含”、“矛盾”和“中性”)。

train_data = read_snli(data_dir, is_train=True)
for x0, x1, y in zip(train_data[0][:3], train_data[1][:3], train_data[2][:3]):
  print('premise:', x0)
  print('hypothesis:', x1)
  print('label:', y)
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is training his horse for a competition .
label: 2
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is at a diner , ordering an omelette .
label: 1
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is outdoors , on a horse .
label: 0
train_data = read_snli(data_dir, is_train=True)
for x0, x1, y in zip(train_data[0][:3], train_data[1][:3], train_data[2][:3]):
  print('premise:', x0)
  print('hypothesis:', x1)
  print('label:', y)
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is training his horse for a competition .
label: 2
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is at a diner , ordering an omelette .
label: 1
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is outdoors , on a horse .
label: 0

訓練集約550000對,測試集約10000對。下圖表明“蘊含”、“矛盾”、“中性”這三個標簽在訓練集和測試集上都是均衡的。

test_data = read_snli(data_dir, is_train=False)
for data in [train_data, test_data]:
  print([[row for row in data[2]].count(i) for i in range(3)])
[183416, 183187, 182764]
[3368, 3237, 3219]
test_data = read_snli(data_dir, is_train=False)
for data in [train_data, test_data]:
  print([[row for row in data[2]].count(i) for i in range(3)])
[183416, 183187, 182764]
[3368, 3237, 3219]

16.4.2.2。定義用于加載數(shù)據(jù)集的類

下面我們繼承DatasetGluon中的類定義一個加載SNLI數(shù)據(jù)集的類。類構(gòu)造函數(shù)中的參數(shù)num_steps指定文本序列的長度,以便每個小批量序列具有相同的形狀。換句話說,num_steps較長序列中第一個之后的標記被修剪,而特殊標記“”將附加到較短的序列,直到它們的長度變?yōu)?/font>num_steps. 通過實現(xiàn)該__getitem__ 功能,我們可以任意訪問前提、假設(shè)和帶有索引的標簽idx。

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1DD3118電路圖紙資料
  2. 0.08 MB   |  1次下載  |  免費
  3. 2AD庫封裝庫安裝教程
  4. 0.49 MB   |  1次下載  |  免費
  5. 3PC6206 300mA低功耗低壓差線性穩(wěn)壓器中文資料
  6. 1.12 MB   |  1次下載  |  免費
  7. 4網(wǎng)絡安全從業(yè)者入門指南
  8. 2.91 MB   |  1次下載  |  免費
  9. 5DS-CS3A P00-CN-V3
  10. 618.05 KB  |  1次下載  |  免費
  11. 6海川SM5701規(guī)格書
  12. 1.48 MB  |  次下載  |  免費
  13. 7H20PR5電磁爐IGBT功率管規(guī)格書
  14. 1.68 MB   |  次下載  |  1 積分
  15. 8IP防護等級說明
  16. 0.08 MB   |  次下載  |  免費

本月

  1. 1貼片三極管上的印字與真實名稱的對照表詳細說明
  2. 0.50 MB   |  103次下載  |  1 積分
  3. 2涂鴉各WiFi模塊原理圖加PCB封裝
  4. 11.75 MB   |  89次下載  |  1 積分
  5. 3錦銳科技CA51F2 SDK開發(fā)包
  6. 24.06 MB   |  43次下載  |  1 積分
  7. 4錦銳CA51F005 SDK開發(fā)包
  8. 19.47 MB   |  19次下載  |  1 積分
  9. 5PCB的EMC設(shè)計指南
  10. 2.47 MB   |  16次下載  |  1 積分
  11. 6HC05藍牙原理圖加PCB
  12. 15.76 MB   |  13次下載  |  1 積分
  13. 7802.11_Wireless_Networks
  14. 4.17 MB   |  12次下載  |  免費
  15. 8蘋果iphone 11電路原理圖
  16. 4.98 MB   |  6次下載  |  2 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935127次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
  4. 1.48MB  |  420064次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233089次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191390次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183342次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81588次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73815次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65989次下載  |  10 積分