資料介紹
School of Electronic Engineering, University of Electronic Science and Technology of China Chengdu 610054 China
Abstract The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed.
Key words biometric recognition; iris localization; normalization; feature vector extraction and match
Introduction
We are living in the age, in which the demand on security is increasing greatly. Consequently, biometric recognition, which is a safe, reliable and convenient technology for personal recognition, appears. This technology makes use of physiological or behavioural characteristics to identify individuals[1]. A biometric system is a pattern recognition system including acquiring the biometric feature from individual, extracting the feature vector from the raw data and comparing this feature vector to another person’s feature vector. Fingerprint, palm-prints, face, iris, gait, speech and signature are widely used biometric features. Biometric recognition can be used in computer network login, internet access, ATM, credit card, national ID card, driver’s license and so on[2]. Nowadays, fingerprint recognition is used widely and successfully. Face recognition is studied by many scholars and experts. Iris recognition is a relatively new branch of biometric recognition.
The human iris is the annular part between pupil and sclera. It has distinct feature such as freckles, coronas, stripes, furrows and so on[3]. An example of iris image is shown in Fig.1. Compared to other biometric technique, iris recognition has many merits:
1) Uniqueness: Dissector F. H. Adler suggested the uniqueness of iris originally in 1965. The visible features in an iris include the trabecular meshwork of connective tissue, collagenous stromal fibres, ciliary processes, contraction, and frekles[3-5]. These textures ensure that different persons have distinct iris. The probability of two persons’ irises being the same is lower than 10?35. Even though they are twins, their irises are quit different. This fact is the reason why we use iris to recognize personal identity.
2) Reliability: iris is an inner organ in our eyes and protected by eyelid, lash and cornea. Unlike finger and palm, it is seldom hurt and the error of recognition caused by scar will never happen. In this sense, iris recognition is much better than fingerprint and palm-print recognition. Furthermore, our irises matured when we were one year old and would not change in our life.
3) Against artifice: a living eye’s pupillary diameter relative to iris diameter in a normal eye is constantly changing, even under stead illumination. The pupillomotor response could provide a test against artifice.
- AI-Intelligent-Recognition AI智能識(shí)物小程序
- 基于IRIS-F6428S_Typical ApplicationMOSFET功率驅(qū)動(dòng)器的參考設(shè)計(jì)
- AltaRica3.0模型到NuSMVP模型的轉(zhuǎn)換規(guī)則和算法 4次下載
- 神經(jīng)網(wǎng)絡(luò)的算法詳細(xì)資料講解 4次下載
- IRIS-HFSS整合流程的演示
- active_filter_design_technique 7次下載
- 基于IRIS4007的高頻高壓開關(guān)電源設(shè)計(jì)
- Molecular Recognition Imaging
- IRIS OEM MESH網(wǎng)絡(luò)射頻模塊
- IRIS無線測(cè)量系統(tǒng)
- An Effective Control Technique
- IRIS 鐵路工業(yè)的企業(yè)與質(zhì)量管理系統(tǒng)
- 重新searche S對(duì)蠕變的模糊補(bǔ)償?shù)姆Q重傳感器
- 在細(xì)線化數(shù)字圖形應(yīng)用中使用IMSA110
- Technique of Displaying Data o
- 基于Arm Neoverse N2實(shí)現(xiàn)自動(dòng)語音識(shí)別技術(shù) 397次閱讀
- 光刻工藝中分辨率增強(qiáng)技術(shù)詳解 676次閱讀
- OCR實(shí)戰(zhàn)教程 1034次閱讀
- 寬禁帶器件和仿真環(huán)境介紹 1582次閱讀
- 在貼片加工廠中有哪些安全防護(hù)需要了解 1408次閱讀
- 復(fù)合放大器實(shí)現(xiàn)高精度的高輸出驅(qū)動(dòng)能力 獲得最佳的性能 1712次閱讀
- 用降壓型穩(wěn)壓器或線性穩(wěn)壓器電源時(shí)值來會(huì)為負(fù)載供電 1058次閱讀
- 鋰電池并聯(lián)充電時(shí)保護(hù)板均衡原理 3.2w次閱讀
- 嵌入式語音識(shí)別系統(tǒng)之電路設(shè)計(jì)原理 3397次閱讀
- 一個(gè)基于rfid的認(rèn)證系統(tǒng)集成到其iQ200自動(dòng)尿液分析系統(tǒng)中 2897次閱讀
- 更小更智能的電機(jī)控制器推進(jìn)HEV/EV市場(chǎng) 1183次閱讀
- 一種用于先進(jìn)工藝節(jié)點(diǎn)中的無源器件建模和驗(yàn)證的IRIS-HFSS整合流程 4099次閱讀
- 基于IRIS4011的大功率藍(lán)光LED光源設(shè)計(jì) 713次閱讀
- 關(guān)于多語言及跨語言的語音識(shí)別技術(shù)敘述 6993次閱讀
- Spatiotemporal Multiplier Networks for Video Action Recognition 2435次閱讀
下載排行
本周
- 1貼片三極管上的印字與真實(shí)名稱的對(duì)照表詳細(xì)說明
- 0.50 MB | 87次下載 | 1 積分
- 2802.11_Wireless_Networks
- 4.17 MB | 12次下載 | 免費(fèi)
- 33D AD庫文件
- 16.96 MB | 2次下載 | 免費(fèi)
- 4BDR6121G直流電機(jī)驅(qū)動(dòng)芯片中文手冊(cè)
- 0.54 MB | 1次下載 | 免費(fèi)
- 5ANT8817 1%3.5W/3.7V,同步自適應(yīng)升壓,超長續(xù)航,H類防破音單聲道音頻功放中文手冊(cè)
- 1.11 MB | 1次下載 | 免費(fèi)
- 610K-100K B3950-B3435NTC熱敏電阻快速查詢對(duì)照表
- 0.10 MB | 1次下載 | 1 積分
- 7ANT8825S內(nèi)置同步升壓,防破音,AB/D類雙模立體聲音頻功放中文手冊(cè)
- 1.29 MB | 次下載 | 免費(fèi)
- 8ANT3270 2×75W/2×38W+75W,免電感,低EMI,D類音頻功率放大器中文手冊(cè)
- 1.33 MB | 次下載 | 免費(fèi)
本月
- 1AI智能眼鏡產(chǎn)業(yè)鏈分析
- 4.43 MB | 311次下載 | 免費(fèi)
- 2蘇泊爾電磁爐線路的電路原理圖資料合集
- 2.02 MB | 286次下載 | 5 積分
- 3長虹液晶電視R-HS310B-5HF01的電源板電路原理圖
- 0.46 MB | 87次下載 | 5 積分
- 4貼片三極管上的印字與真實(shí)名稱的對(duì)照表詳細(xì)說明
- 0.50 MB | 87次下載 | 1 積分
- 5U盤一鍵制作
- 23.84 MB | 41次下載 | 免費(fèi)
- 6AO4803A雙P通道增強(qiáng)型場(chǎng)效應(yīng)晶體管的數(shù)據(jù)手冊(cè)
- 0.11 MB | 28次下載 | 2 積分
- 7長虹液晶彩電LS29機(jī)芯的技術(shù)資料說明
- 3.42 MB | 16次下載 | 2 積分
- 8802.11_Wireless_Networks
- 4.17 MB | 12次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935127次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計(jì)
- 1.48MB | 420064次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233089次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191387次下載 | 10 積分
- 5十天學(xué)會(huì)AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183342次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81586次下載 | 10 積分
- 7Keil工具M(jìn)DK-Arm免費(fèi)下載
- 0.02 MB | 73815次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評(píng)論